Magnetic Resonance Imaging (MRI) - Breast

What is MRI of the Breast?

Magnetic resonance imaging (MRI) is a noninvasive medical test that helps physicians diagnose and treat medical conditions.

MRI uses a powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, bone and virtually all other internal body structures. The images can then be examined on a computer monitor, transmitted electronically, printed or copied to a CD. MRI does not use ionizing radiation (x-rays).

Detailed MR images allow physicians to evaluate various parts of the body and determine the presence of certain diseases.

MRI of the breast offers valuable information about many breast conditions that cannot be obtained by other imaging modalities, such as mammography or ultrasound.

What are some common uses of the procedure?

MRI of the breast is not a replacement for mammography or ultrasound imaging but rather a supplemental tool that has many important uses, including:

- Screening in women at high risk for breast cancer

  For women at high risk for breast cancer, typically because of a strong family history, MRI may be an appropriate tool to screen for breast cancer. A strong family history is usually a mother or sister who has had breast cancer before age 50. It can also be aunts or cousins, including those on your father’s side. Relatives who have had ovarian cancer also increase your risk. Your radiologist or primary care doctor can look at your family history and determine if screening MRI may be appropriate for you.

- Determining the extent of cancer after a new diagnosis of breast cancer

  After being diagnosed with breast cancer, a breast MRI may be performed to determine:
  - how large the cancer is and whether it involves the underlying muscle.
• if there are other cancers in the same breast and whether there is an unsuspected cancer in the opposite breast.
• if there are any abnormally large lymph nodes in the armpit, which can be a sign the cancer has spread to that site.

Further evaluating hard-to-assess abnormalities seen on mammography

Sometimes an abnormality seen on a mammogram cannot be adequately evaluated by additional mammography and ultrasound alone. In these rare cases, MRI can be used to definitively determine if the abnormality needs biopsy or can safely be left alone.

• Evaluating lumpectomy sites in the years following breast cancer treatment

Scarring and recurrent cancer can look identical on mammography and ultrasound. If there is a change in a lumpectomy scar by either mammography or on a physical exam, MRI can help determine whether the change is normal maturation of the scar or a recurrence of the cancer.

• Following chemotherapy treatment in patients getting Neoadjuvant Chemotherapy

In some cases, breast cancer will be treated with chemotherapy before it has been removed by surgery. This is called neoadjuvant chemotherapy. In these cases, MRI is often used to monitor how well the chemotherapy is working and to reevaluate the amount of tumor still present before the surgery is performed.

• Evaluating breast implants

MRI is the best test for determining whether silicone implants have ruptured.

How should I prepare?

You may be asked to wear a gown during the exam or you may be allowed to wear your own clothing if it is loose-fitting and has no metal fasteners.

Guidelines about eating and drinking before an MRI exam vary with the specific exam and also with the facility. Unless you are told otherwise, you may follow your regular daily routine and take food and medications as usual.

Some MRI examinations may require the patient to receive an injection of contrast material into the bloodstream. The radiologist, technologist or a nurse may ask if you have allergies of any kind, such as an allergy to iodine or x-ray contrast material, drugs, food, or the environment, or if you have asthma. The contrast material most commonly used for an MRI exam contains a metal called gadolinium. Gadolinium can be used in patients with iodine contrast allergy, after appropriate pre-medication (this will depend on local policies of the imaging facility). Patient consent may be requested in this instance. For more information on adverse reactions to gadolinium-based contrast agents, please consult the ACR Manual on Contrast Media. (http://www.acr.org/Quality-Safety/Resources/Contrast-Manual)
The radiologist should also know if you have any serious health problems, or if you have recently had surgery. Some conditions, such as severe kidney disease may prevent you from being given contrast material for an MRI. If there is a history of kidney disease or liver transplant, it may be necessary to perform a blood test to determine whether the kidneys are functioning adequately.

Women should always inform their physician or technologist if there is any possibility that they are pregnant. MRI has been used for scanning patients since the 1980s with no reports of any ill effects on pregnant women or their babies. However, because the baby will be in a strong magnetic field, pregnant women should not have this exam in the first trimester of pregnancy unless the potential benefit from the MRI exam is assumed to outweigh the potential risks. Pregnant women should not receive injections of contrast material except when absolutely necessary for medical treatment. See the Safety page (www.RadiologyInfo.org/en/safety/) for more information about pregnancy and MRI.

If you have claustrophobia (fear of enclosed spaces) or anxiety, you may want to ask your physician for a prescription for a mild sedative prior to the scheduled examination.

Jewelry and other accessories should be left at home if possible, or removed prior to the MRI scan. Because they can interfere with the magnetic field of the MRI unit, metal and electronic objects are not allowed in the exam room. These items include:

- jewelry, watches, credit cards and hearing aids, all of which can be damaged
- pins, hairpins, metal zippers and similar metallic items, which can distort MRI images
- removable dental work
- pens, pocket knives and eyeglasses
- body piercings

In most cases, an MRI exam is safe for patients with metal implants, except for a few types. People with the following implants cannot be scanned and should not enter the MRI scanning area unless explicitly instructed to do so by a radiologist or technologist who is aware of the presence of any of the following:

- cochlear (ear) implant
- some types of clips used on brain aneurysms
- some types of metal coils placed within blood vessels

You should tell the technologist if you have medical or electronic devices in your body, because they may interfere with the exam or potentially pose a risk, depending on their nature and the strength of the MRI magnet. Some implanted devices require a short period of time after placement (usually six weeks) before being safe for MRI examinations. Examples include but are not limited to:

- artificial heart valves
- implanted drug infusion ports
- implanted electronic device, including a cardiac defibrillator, pacemaker or retained leads.
- artificial limbs or metallic joint prostheses
- implanted nerve stimulators
- metal pins, screws, plates, stents or surgical staples

In general, metal objects used in orthopedic surgery pose no risk during MRI. However, a recently placed artificial joint may require the use of another imaging procedure. If there is any question of their presence, an x-ray may be taken to detect and identify any metal objects.
Patients who might have metal objects in certain parts of their bodies may also require an x-ray prior to an MRI. You should notify the technologist or radiologist of any shrapnel, bullets, or other pieces of metal which may be present in your body due to accidents. Foreign bodies near the eyes are particularly important. Dyes used in tattoos may contain iron and could heat up during MRI, but this is rarely a problem. Tooth fillings and braces usually are not affected by the magnetic field, but they may distort images of the facial area or brain, so the radiologist should be aware of them.

What does the equipment look like?

The traditional MRI unit is a large cylinder-shaped tube surrounded by a circular magnet. You will lie on a moveable examination table that slides into the center of the magnet.

Some MRI units, called short-bore systems, are designed so that the magnet does not completely surround you; others are open on the sides (open MRI). These units are especially helpful for examining patients who are fearful of being in a closed space and for those who are very obese. Newer open MRI units provide very high quality images for many types of exams; however, open MRI units with older magnets may not provide this same image quality. Certain types of exams cannot be performed using open MRI. For more information, consult your radiologist.

The computer workstation that processes the imaging information is located in a separate room from the scanner.

How does the procedure work?

Unlike conventional x-ray examinations and computed tomography (CT) scans, MRI does not depend on ionizing radiation. Instead, while in the magnet, radio waves redirect the axes of spinning protons, which are the nuclei of hydrogen atoms.

The magnetic field is produced by passing an electric current through wire coils in most MRI units. Other coils, located in the machine and in some cases, placed around the part of the body being imaged, send and receive radio waves, producing signals that are detected by the coils.

A computer then processes the signals and generates a series of images, each of which shows a thin slice of the body. The images can then be studied from different angles by the interpreting radiologist.

Frequently, the differentiation of abnormal (diseased) tissue from normal tissues is better with MRI than with other imaging modalities such as x-ray, CT and ultrasound.

How is the procedure performed?
MRI examinations may be performed on outpatients or inpatients.

You will be positioned on the moveable examination table. Straps and bolsters may be used to help you stay still and maintain the correct position during imaging.

For an MRI of the breast, you will lie face down on a platform specially designed for the procedure. The platform has openings to accommodate your breasts and allow them to be imaged without compression. The electronics needed to capture the MRI image are actually built into the platform. It is important to remain very still throughout the exam. This is best accomplished by making sure you are comfortable and can relax rather than trying to actively hold still tensing your muscles. Be sure to let the technologist know if something is uncomfortable, since discomfort increases the chance that you will feel the need to move during the exam.

If MRI of the breast is being performed for the sole purpose of determining if you have a ruptured breast implant, you will not be given contrast material. If the exam is being performed for any other reason, you will need to have a contrast material injected intravenously. MRI of the breast without contrast material is inadequate for identifying breast cancers.

If a contrast material will be used in the MRI exam, a physician, nurse or technologist will insert an intravenous (IV) catheter, also known as an IV line, into a vein in your hand or arm. A saline solution may be used. The solution will drip through the IV to prevent blockage of the IV catheter until the contrast material is injected.

You will be moved into the magnet of the MRI unit and the radiologist and technologist will leave the room while the MRI examination is performed.

If a contrast material is used during the examination, it will be injected into the intravenous line (IV) after an initial series of scans. Additional series of images will be taken during or following the injection.

When the examination is completed, you may be asked to wait until the technologist or radiologist checks the images in case additional images are needed.

Your intravenous line will be removed.

MRI exams generally include multiple runs (sequences), some of which may last several minutes.

The imaging session lasts between 30 minutes and one hour and the total examination is usually completed within an hour and a half.

MR spectroscopy, which provides additional information on the chemicals present in the body’s cells, may also be performed during the MRI exam and may add approximately 15 minutes to the total exam time.

What will I experience during and after the procedure?

Most MRI exams are painless. However, some patients find it uncomfortable to remain still during MR imaging. Others experience a sense of being closed-in (claustrophobia). Therefore, sedation can be arranged for those patients who anticipate anxiety, but fewer than one in 20 require medication.
It is normal for the area of your body being imaged to feel slightly warm, but if it bothers you, notify the radiologist or technologist. It is important that you remain perfectly still while the images are being recorded, which is typically only a few seconds to a few minutes at a time. For some types of exams, you may be asked to hold your breath. You will know when images are being recorded because you will hear tapping or thumping sounds when the coils that generate the radiofrequency pulses are activated. You will be able to relax between imaging sequences, but will be asked to maintain your position as much as possible.

You will usually be alone in the exam room during the MRI procedure. However, the technologist will be able to see, hear and speak with you at all times using a two-way intercom. Many MRI centers allow a friend or parent to stay in the room as long as they are also screened for safety in the magnetic environment.

You may be offered or you may request earplugs to reduce the noise of the MRI scanner, which produces loud thumping and humming noises during imaging. Children will be given appropriately sized earplugs or headphones during the exam. MRI scanners are air-conditioned and well-lit. Some scanners have music to help you pass the time.

When the contrast material is injected, it is normal to feel coolness and a flushing sensation for a minute or two. The intravenous needle may cause you some discomfort when it is inserted and once it is removed, you may experience some bruising. There is also a very small chance of irritation of your skin at the site of the IV tube insertion.

If you have not been sedated, no recovery period is necessary. You may resume your usual activities and normal diet immediately after the exam. A few patients experience side effects from the contrast material, including nausea and local pain. Very rarely, patients are allergic to the contrast material and experience hives, itchy eyes or other reactions. If you experience allergic symptoms, a radiologist or other physician will be available for immediate assistance.

**Who interprets the results and how do I get them?**

A radiologist, a physician specifically trained to supervise and interpret radiology examinations, will analyze the images and send a signed report to your primary care or referring physician, who will share the results with you.

Follow-up examinations may be necessary, and your doctor will explain the exact reason why another exam is requested. Sometimes a follow-up exam is done because a suspicious or questionable finding needs clarification with additional views or a special imaging technique. A follow-up examination may also be necessary so that any change in a known abnormality can be monitored over time. Follow-up examinations are sometimes the best way to see if treatment is working or if an abnormality is stable over time.

**What are the benefits vs. risks?**
Benefits

- MRI is a noninvasive imaging technique that does not involve exposure to ionizing radiation.
- MRI has proven valuable in diagnosing a broad range of conditions, including detecting and staging breast cancer, particularly when other imaging studies (mammography, ultrasound, etc.) fail to provide adequate information.
- MRI enables the discovery of abnormalities that might be obscured by bone with other imaging methods.
- The contrast material used in MRI exams is less likely to produce an allergic reaction than the iodine-based contrast materials used for conventional x-rays and CT scanning.
- MRI is growing in popularity as an addition to traditional x-ray mammography in the early diagnosis of breast cancer.
- MRI has been shown to detect small breast lesions that are sometimes missed by mammography.
- MRI can successfully image the dense breast tissue common in younger women, and it can successfully image breast implants. Both of these are difficult to image using traditional mammography.
- MRI as an addition to mammography has been shown to be useful in evaluating women at high risk for breast cancer.
- If a suspicious lesion is seen with MRI only, MRI can provide guidance for biopsy.

Risks

- The MRI examination poses almost no risk to the average patient when appropriate safety guidelines are followed.
- If sedation is used, there are risks of excessive sedation. The technologist or nurse monitors your vital signs to minimize this risk.
- Although the strong magnetic field is not harmful in itself, implanted medical devices that contain metal may malfunction or cause problems during an MRI exam.
- There is a very slight risk of an allergic reaction if contrast material is injected. Such reactions usually are mild and easily controlled by medication. If you experience allergic symptoms, a radiologist or other physician will be available for immediate assistance.
- Nephrogenic systemic fibrosis is currently a recognized, but rare, complication of MRI believed to be caused by the injection of high doses of gadolinium-based contrast material in patients with very poor kidney function. Careful assessment of kidney function before considering a contrast injection minimizes the risk of this very rare complication.
- Manufacturers of intravenous contrast indicate mothers should not breastfeed their babies for 24-48 hours after contrast medium is given. However, both the American College of Radiology (ACR) and the European Society of Urogenital Radiology note that the available data suggest that it is safe to continue breastfeeding after receiving intravenous contrast. For further information please consult the ACR Manual on Contrast Media and its references. (www.acr.org/Quality-Safety/Resources/Contrast-Manual)

What are the limitations of MRI of the Breast?

High-quality images are assured only if you are able to remain perfectly still while...
the images are being recorded. If you are anxious, confused or in severe pain, you may find it difficult to lie still during imaging.

A person who is very large may not fit into the opening of certain types of MRI machines.

The presence of an implant or other metallic object sometimes makes it difficult to obtain clear images. Patient movement can have the same effect.

Although there is no reason to believe that magnetic resonance imaging harms the fetus, pregnant women usually are advised not to have an MRI exam during the first trimester unless medically necessary.

MRI may not always distinguish between cancer tissue and fluid, known as edema.

MRI typically costs more and may take more time to perform than other imaging modalities.

Sometimes a benign (non-cancerous) piece of tissue in the breast can take up the contrast material and show up as a bright spot on the image. Often, the radiologist can tell by the appearance of the tissue whether it is cancer or not. When it is not possible, other testing such as ultrasound of that specific spot or a biopsy may be needed. If additional testing or biopsy shows no cancer, it is called a false-positive test result.

Additional Information and Resources

RadiologyInfo
Breast Cancer Treatment

RTAnswers.org
Radiation Therapy for Breast Cancer
(www.rtanswers.com/treatmentinformation/cancertypes/breast/index.aspx)

Disclaimer

This information is copied from the RadiologyInfo Web site (http://www.radiologyinfo.org) which is dedicated to providing the highest quality information. To ensure that, each section is reviewed by a physician with expertise in the area presented. All information contained in the Web site is further reviewed by an ACR (American College of Radiology) - RSNA (Radiological Society of North America) committee, comprising physicians with expertise in several radiologic areas.

However, it is not possible to assure that this Web site contains complete, up-to-date information on any particular subject. Therefore, ACR and RSNA make no representations or warranties about the suitability of this information for use for any particular purpose. All information is provided “as is” without express or implied warranty.

Please visit the RadiologyInfo Web site at http://www.radiologyinfo.org to view or download the latest information.